

Genetics

Developing in vitro and in vivo high throughput screening platforms for hazard prediction of manufactured nanomaterials

Katrin Volkmann¹, Iris Hansjosten¹, Juliane Rapp¹, Iseult Lynch², Eugenia Valsami Jones², Silvia Diabaté¹, Carsten Weiss¹ ¹Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ²School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

The growing number of manufactured nanomaterials (MNMs) used in consumer products and industrial applications will have an unpredictable impact on human health and on the ecosystem. Thus there is an urgent need to further develop high throughput testing for hazard prediction in nanotoxicology. in vitro tests in cultured cells are widely used in nanotoxicology and provide quantitative information about MNM induced toxicity e.g. cell death. Here automated microscopy and software aided image analysis can be developed into high throughput assays with multiple testing conditions and endpoints. The zebrafish (Danio rerio) embryo emerges as a vertebrate model organism for the complex interactions of MNMs with a living organism. A new OECD guidelines for the Testing of Chemicals, Section 2, OECD Publishing.) defines testing conditions and endpoints for comparable results. This guideline might be adapted for tests with MNMs. Recently, automated image analysis has facilitated quantification of various endpoints (e.g. lethality, hatching, malformations) upon MNM exposure. As a partner of the EU funded NanoMILE consortium we will develop a screening for up to 100 MNMs by combining high throughput in vitro testing in cultured cells and in vivo whole organism exposure of zebrafish embryos with help of high content imaging and image analysis. The NanoMILE consortium will provide well characterized MNMs with various specific physico-chemical properties (chemical composition, size, charge, hydrophobicity, shape and morphology). For the first test phase nine metal oxide MNMs with a mean particles with different coatings, allowing systematic tests of selected physical-chemical properties on toxicity. The large volume of data generated by this work will be instrumental to establish quantitative structure (property)-activity relationships (QS(P)ARs) and to connect observed impacts with the fate of the MNMs in vitro / in vivo. The results shall help to predict the toxicity of new MNMs to humans and the environment.

Metal Oxide	млм	Size (nm)	Variable Phys-Chem Property
TiO ₂	Surface-modified TiO ₂ - surface 1 (Uncoated)	10	1st in series of 5 coatings
TiO ₂	Surface-modified TiO ₂ - surface 2 - PVP coated	10	Surface coating
TiO ₂	Surface-modified TiO ₂ - surface 3 - Pluronic F127 Coated	10	Surface coating
TiO ₂	Surface-modified TiO ₂ - surface 4 - Dispex AA4040 Coated	10	Surface coating
TiO ₂	TiO ₂ (rutile, hydrophilic) NM-104	20	Surface coating
CeO ₂	Cerium(IV) oxide (Undoped)	20	Redox (doped versions in preparation)
CeO ₂	Cerium(IV) oxide (precipitated, uncoated) NM-212	33	Size & Surface area
ZnO	ZnO Uncoated Hydrophilic (NM-110)	150	Coated and Uncoated Industrial ZnO
ZnO	ZnO TECS Coated Hydrophobic (triethoxycaprylyl silane) (NM-111)	140	Coated and Uncoated Industrial ZnO
Control			
Polystyrene	NH ₂ modified polystyrene	52	Amino modified

Correlate nanomaterial toxicity with physico-chemical properties. Help to predict toxicity for humans and the environment.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

xicity screening	Experimental Design
ental homology to mammals	<i>in vitro</i> screening A549 cells, 24h exposure, 1-125µg/ml. Staining with Hoechst 33342, Propidium iod High throughput/content fluorescent imagin Automated image analysis with ScanR software (Olympus) for cell death.
ent)	<i>in vivo</i> screening Wildtype zebrafish embryos and larvae, 24-120h exposure, 1 and 125µg/ml. High throughput/content brightfield imaging Manual image analysis for mortality, malfor and hatching.
Shpf 125µg/ml Brightfield Representative image	
Control	
□ not analysed TiO ₂ uncoated	
□ normal TiO ₂ PVP coated	Conclusions and Perspec
NOUTES WHY	
TiO ₂ F127 coated	 We have developed a high throughput s
hing TiO ₂ AA4040 coated	 Development of a high throughput in viv
	 Of the 10 tested particles only the uncoa
$rac{1}{2}$ ZnO un 1µg/ml $rac{1}{2}$ ZnO un 125µg/ml $rac{1}{2}$ TiO ₂ (JRC NM-104)	 First results show high similarities between the second sec
→ ZnO TECS 1µg/ml → ZnO TECS 125µg/ml	 Particles dispersed in cell and embryo m
Control	 Additional particles will be screened as a
120 CeO ₂ (JRC NM-212)	 For those particles that show no effect or
IH₂ 62.5 μg/ml	concentration are planned.
	 Additional cell lines will be used for in vi
ZnO Coated (NM-111)	Zebrafish embryo sorting will be automa
□ malformed □ dead	 For those particles that show an effect o
Polystyrene NH ₂	Acknowledgement: This project has received a programme for research, technological deviced and the programme for research.
96 120 Scale bar 1000µm	r rogramme for recourser, technological dev

ctives

- screening assay for *in vitro* testing of MNM cytotoxicity.
- *vo* assay is on it's way.
- ated and TECS coated ZnO and amino-modified polystyrene
- een toxicity of the MNMs in vitro and in vivo.
- nedium will be characterized with DLS and TEM. soon as available.
- on cells at 24h, extended exposure periods for the highest
- vitro screening (HCT116).
- on embryos, dose response curves will be generated.
- ived funding from the European Union's Seventh Framework elopment and demonstration under grant agreement no 310451.

www.kit.edu