Willkommen Welcome Bienvenue

Materials Science & Technology

Transformations of silver nanoparticles relevant to product use

Denise M. Mitrano, Elisa Rimmele, Adrian Wicher, Rolf Erni, Murray Height, Bernd Nowack

Project Goals

Nanomaterials safer by design

- Correlate specific ENM properties to their aging, transformation, and behavior
- Relate specific characteristics to impacts
- Classify nanomaterials according to their impacts

Project Goals

Nanomaterials safer by design

- Correlate specific ENM properties to their aging, transformation, and behavior
- Relate specific characteristics to impacts
- Classify nanomaterials according to their impacts

Presentation Outline

- Understand relevant, product specific Ag ENP transformations
- Laboratory washing of nano and conventional Ag fabrics
- Measure [Ag] release and define NM forms in wash water
- Correlate transformations to materials washed

Aging and Transformation Studies

D. Mitrano

Particle Aging and Transformations

"By exploring exposure potentials and characteristics across the life cycle of a product that utilizes new materials, it is, in principle, possible to flag up areas of risk concern that can be used to direct further research and action."

-- Maynard, Nature Nanotechnology 2014

Particle Aging and Transformations

D. Mitrano

Ag Release and Transformation after Laundering Fabrics

Nowack et al. 2013

(polymer / coating)

Comparison of NP and Conventional Ag after Release

Conventional Ag Additives

Ag salts: AgCl, AgCl on TiO₂ carrier Ag ion exchange: AgZeolite Metallic Ag: Ag threads

Comparison of NP and Conventional Ag after Release

Comparison of NP and Conventional Ag after Release

- Make fabrics with known Ag additives (conventional and nano)
- Laboratory washing procedure with standardized detergent
- Collect wash solution and analyze [Ag] in various fractions
- TEM/EDX analysis of (transformed) particles after wash cycle

Washing Ag imbedded textiles forms similar Ag particulate material

(nano) Silver Release from Textiles

- Commercial fabric released highest total [Ag], but had 100X more Ag added
- Prepared nano-textiles released lower total [Ag] into the wash water (< 100 µg/L) than similar conventional treatments
- Most Ag was recovered in the > 0.45 micron size range (filter digest) for all prepared fabrics

Nanomaterial Release from Textiles

D. Mitrano et. al, ACS Nano 2014

Nanomaterial Release from Textiles

			Starting Silver Form on Textile									
			Control Conventional					Nano				
			AgNO ₃	X-Static	AgCI	AgCI/TiO ₂	AgZeolite	NM 300	AGS-20			
			Α	В	С	D	E	F	G			
NP Forms in Washing Liquid	Ag	1		27	-	ND	<u>854</u>	there	ND			
	AgCI	2	<u>50 nm</u>	ND	ND	ND	ND	<u>20 nm</u>	ND			
	Ag/S	3	**	<u>m</u> .	ND	2 <u>8 ne</u>	33	22 mm				

D. Mitrano et. al, ACS Nano 2014

Ag Transformation After Release

Transformation of Materials

D. Mitrano et al, submitted

Experimental Outcomes

- Aged and/or product released NM will have different qualities than pristine ENM
- Product use dictates relevant aging/transformation
- Initial form of Ag incorporated into textile is important to the size and concentration of released Ag
- "Conventional" additives to textiles, etc. may also release nano-sized materials
- Multiple, subsequent transformation possible and likely

Materials Science & Technology

Thank You!

Dr. Bernd Nowack (Empa St. Gallen) Elisa Rimmele (Currently: bluesign) Adrian Wichser (Empa Dubendorf; analytical chemistry) Rolf Erni (Empa Dubendorf; microscopy center) Dr. Murray Height (HeiQ AG Fabrics)

Silver Treatments on Fabrics

	Silver Additive	Trade Name	Supplier	Silver Form	Particle Size	Fabric Construction	Treatment	Measured (mg Ag/kg fabric)
	AgCl	T25-25	Sanitized	Salt	> 100 nm	Woven	Surface, roll to roll	14.6
nal	X-Static (metallic Ag)	X-Static	Noble Biomater ials	Metal	Fiber	Knitted	Surface, electrolyti c deposition	14500
onvention	AgCl/TiO ₂	JMAC	Clariant	Salt	Composi te Ø ca. 1µm	Woven	Surface, roll to roll	19.5
C	Ag-Zeolite	#382280	Sigma- Aldrich	Ionic	Composi te +20 mesh	Woven	Surface, roll to roll	67.6
Nano	Ag/SiO ₂	AGS-20	HeiQ Materials	Metal	Composi te Ø ca. 1µm	Woven and knitted	Bulk and Surface	116 ± 1 (Bulk) 18.2 ± 0.3 (Surface)
	NM-300K	NM300K	EU JRC	Metal	< 20 nm	Woven	Surface	15.5 ± 0.6

D. Mitrano et al, ACS Nano 2014

EDX Analysis of NP in Washwater

D. Mitrano et al, ACS Nano 2014

Spike Recovery of Ag in Washing Liquid

D. Mitrano et al, ACS Nano 2014

(nano) Silver Release from Textiles

D. Mitrano et. al, ACS Nano 2014