

Hazard mechanisms, biokinetics & vulnerable populations

Éva Valsami-Jones NanoMILE

Hazard mechanisms, biokinetics & vulnerable populations: science shaped around the Strategic Research Agenda

Reflections of the past

Highlights from project NanoReTox

NanoReTox investigated:

- 8 inorganic MNM classes
 - TiO₂, CuO, Ag, Au, ZnO, SiO₂, CdS, CdSe NPs along with aqueous and bulk counterparts
- 55 types of MNMs (range of sizes, coatings, shapes, both lab & commercial)
- 33 types of *in vitro* dose response tests with 6 different types of cells
- 23 types of *in vivo* dose response tests
- 8 species + human cells of various types

BIRMINGHAM

Key conclusions

- •Measures in reactivity do not seem to explain differences completely
- Chemical composition primary variant
- •Order of aggregation/solubility does not follow order of toxicity
- •Nanoeffect is there, but it is not off-scale

BIRMINGHAN

Highlights from project ModNanoTox

ModNanoTox unique features

Range of models & scales

- Molecular simulation models.
- Database of evaluated literature.
- Toxicokinetic/toxicodynamic models.
- QSAR models.
- Environmental exposure assessment models.
- Ecosystem effects, population models.

Hazard mechanisms, biokinetics & vulnerable populations: science shaped around the Strategic Research Agenda

Reflections into the future

Latest project: Libraries (The NanoMILE library)

Nanomaterial	Justification for selection	Key descriptors	Surface functionalisation
CeO ₂	Low solubility -> low toxicity Redox variations Isotopic label available Commercial value	Redox state Size Shape Solubility	Indirect - variation of stabilizing polymers
ZnO	High solubility -> high toxicity Isotopic label available High commercial value	Size Shape Dissolution rate / coating	Hydrophillic Hydrophobic
Ag	Variable solubility -> variable toxicity Isotopic label available High commercial value	Size Shape (including flowers) Dissolution rate / coating Surface defects	Citrate Tannic acid Fulvic acid Humic acid
SiO ₂	Easily fluorescently labelled Multiple synthesis routes Low toxicity generally, though evidence that structural transformations can induce toxicity (e.g. fumed silica)	Size Porosity	- unmodified -COOH -NH ₂ -(epoxy)
TiO ₂	Low solubility -> low toxicity Multiple coatings available Different crystal phases Commercial value Photoreactive	Crystal structure / phase Coating (ageing) Size ROS production	- Uncoated - PVP - Pluronic F127 - Dispex AA4040
Fe _x O _y	Likely low solubility -> low toxicity Multiple structures & Magnetic properties Potential for labelling Medical applications	Crystal structure / phase Magnetic properties Coating Size	- uncoated - Dextran - PEG
CNT, Graphene or other carbon based MNM	High commercial relevance (e.g. Graphene Flagship) Non-spherical -> potential for alternative mechanisms of action	Aspect ratio Shape / structure C/O ratio / surface groups Surface functionalisation	CNT CNT-COOH CNT-NH ₂ (?)

Establishment of Nanoparticle Library (>150 variations from 7 main families)

Latest projects: selection of MNMs

Hypothesis focus

•Very small size (to follow quantum confinement etc effects): Au, Ag, TiO_2

•Surface functionalisation (systematic, widerange): SiO₂ (+ve, -ve, naked, hydrophobicity/philicity), spions

- •Solubility: Fe-doped ZnO, ultrastable Ag
- •Redox potential: Zr-doped ceria, Fe-oxides

Predictive nanotoxicology & read-across

NEWS AND OPINIONS

A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs

Iseult Lynch^{a,*}, Carsten Weiss^b, Eugenia Valsami-Jones^{a,c}

^a Department of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

^b Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344

Eggenstein-Leopoldshafen, 76021 Karlsruhe, Germany

^c Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Observed variables Loadings Identified Principle (descriptors) (strength of correlation) components a_{11} X₁ (size) a₁₂ a₁₃ a₂₁ X₂ (charge) PC1 a₂₂ a₂₃ composition a_{31} X₃ (band gap) a₃₂ $PC_1 = a_{11}X_1 + a_{21}X_2 + a_{31}X_3 + \dots$ a₃₃ a₄₁ a₄₂ PC2 X₄ (strain) Extrinsic factors a₄₃ a₅₁ a_{52} $\mathsf{PC}_2 = \mathsf{a}_{12}\mathsf{X}_2 + \mathsf{a}_{22}\mathsf{X}_2 + \mathsf{a}_{32}\mathsf{X}_3 + \dots$ X₅ (hydrophobicity a₅₃ PC3 a₆₁ a₆₂ Intrinsic factors X_6 (porosity) a₆₃ a₇₂ a₇₁ $PC_3 = a_{13}X_3 + a_{23}X_2 + a_{33}X_3 + \dots$ X₇ (unfolding) a₇₃ a_{n2} a_{n1} a_{n3} X_n (binding)

Predictive nanotoxicology & read-across

NSC WORKSHOP SERIES

Proposing as the "Brussels nanosafety enue

d'Auderghem / Oudergemselaan B-1040 Brussels, Belgium europe@lists.bham.a c.uk

NSC "Brussels" WORKSHOP SERIES

- Proposed topics for workshops
 - Methodologies for phys-chem / biophys-chem characterisation

May 2015

 Data curation & tools for interrogation of data / risk assessment

October 2015

 Alternative test methods – high throughput & omics approaches

May 2016

NSC "Brussels" WORKSHOP SERIES

Implementation approach & approximate

Lead projects assign workshop coordinators from their consortia	Workshop coordinators agree scope & plan call for "data" inputs & participation	Call for relevant data sets & registration for 2.5-day workshop	Workshop coordinators compile inputs and draft white paper for discussion		
6 months prior to workshop 4 months prior to workshop (p2w)					
Workshop coordinators identify discussion leaders for workshop	Workshop coordinators send draft white paper to participants	2.5 day workshop with experts to discuss & finalise white paper / publication	Final polishing by workshop coordinators prior to publication		
0 montho n0w	1 month n2w		month post works		

NSC "Brussels" WORKSHOP SERIES

- Outputs from each workshop would be:
 - White paper & associated summary publication
 - Agreed terminology for the topic
 - Agreed protocols and approaches
 - Agreed understanding of current limitations of the methods / approaches in terms of their applicability to different NMs classes
 - Plan for benchmarking activities and buy-in of relevant projects with capabilities to achieve this
 - Perhaps more

NSC "Brussels" WORKSHOP SERIES

- Key questions
- 1. Can the white papers / standardised approaches be "charged for" ?

i.e. at NanoMILE ESS had interesting discussion regarding whether agreed protocols could be sold as per BSI, ISO etc.?

- idea would be that money generated rolls-back into NSC for subsequent workshops events

2. Internationalisation? Do we already want to invite experts from outside EU to the workshops?

THANK YOU!

