

High throughput screening in nanotoxicology

Dr. Kirsten Gerloff 03.03.2015

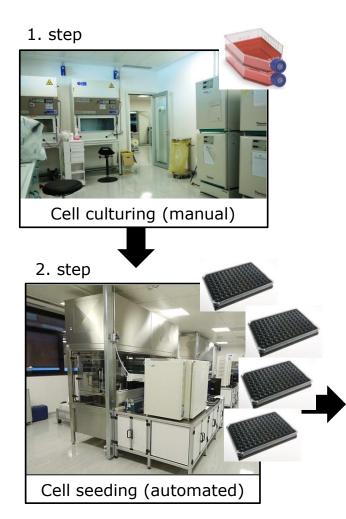
www.jrc.ec.europa.eu

Serving society Stimulating innovation Supporting legislation

Overview

- Motivation
- > HTS/HCA facility at EURL-ECVAM
- > Translating data into a regulatory context
- HTS in nanotoxicology
- Summary

Motivation


Reasons for assay automation

- Efficiency generate data faster
- Coverage test more materials
- Precision minimise technical variance
- Application make ready for industrial use
- Necessity validation of HTS-specific assays

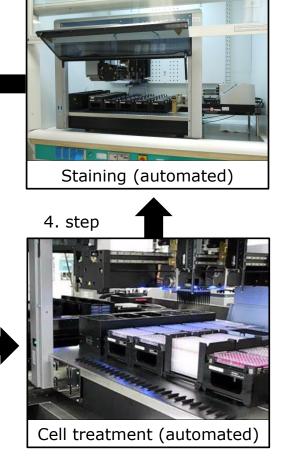
Workflow assay automation

6. step

3. step

1:2

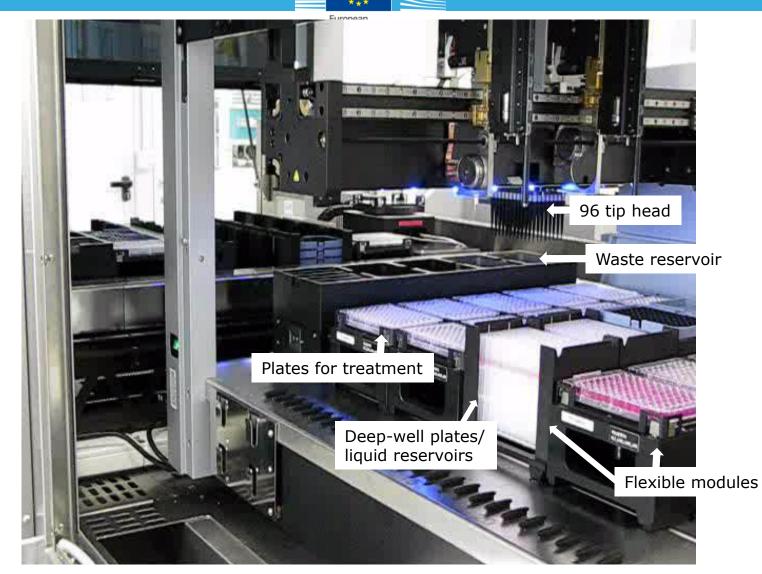
1:2


Particle preparation

(semi-automated)

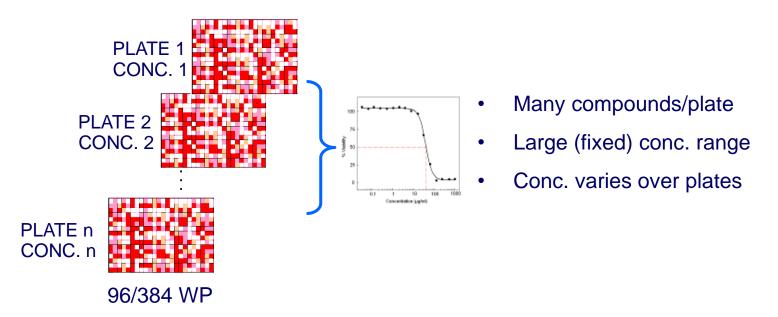
C10

5. step



European Commission

Automation platform



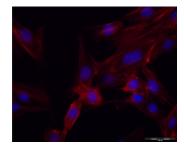
1 to 300µl volume handling

Quantative HTS*

* Inglese J. et al. "Quantitative high-throughput screening..." PNAS 103,11473-11478, 2006 Xia M. et al. "Compound cytotoxicity profiling..." Environmental Health Perspectives 116, 284-291, 2008.

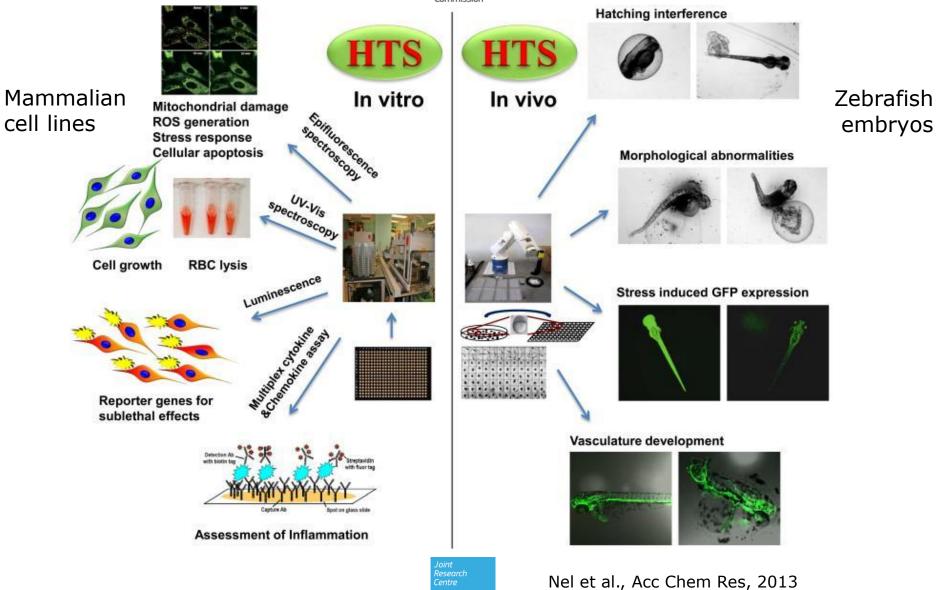
Quality of data

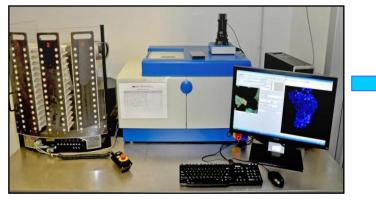
Throughput

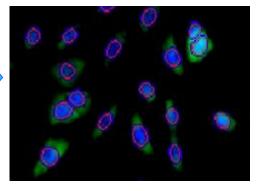


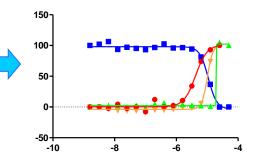
Challenges

- High setup and maintenance costs
- Handling of nanomaterials (sonication prior to treatment, sedimentation,...)
- Availability and quality of large material libraries
- Scale and reproducibility of cell culturing
- Operational complexity
- Heavy price for small mistakes




Commission


Automated image acquisition


Cellomics

High content imaging (Cellomics)

Bioapplication mask

Dose - Response

Cell viability Endpoints (Channel 1)

- Cell count (nuclear identification)
- Nuclear morphology (size, shape)
- Nuclear brightness (apoptosis vs. necrosis)

Specific Endpoint – (up to 5 channels)

- Additional markers of cell viability (e.g. cell membrane integrity)
- Specific apoptosis markers
- Mitochondrial health

.

- DNA damage
- ROS induction
- Specific target organ toxicity (e.g. Steatosis development in the liver)

Joint Research Centre

Automated image acquisition

Cellomics

European Commission

Determining the best assay conditions

Suitable cell model \rightarrow More complex if 3D cell models shall be used

Time lapse to find the best experimental time point

Assay needs to be suitable for automation \rightarrow Fixation of cells

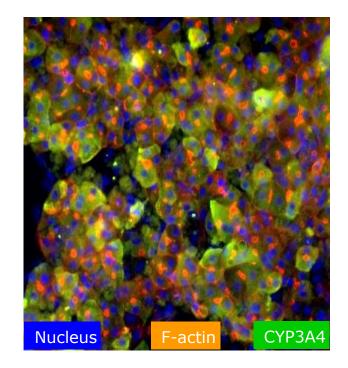
Determining the best assay conditions

Suitable cell model \rightarrow More complex if 3D cell models shall be used

Time lapse to find the best experimental time point

Assay needs to be suitable for automation \rightarrow Fixation of cells

Our cell system: HepaRG cells


- Human liver cell line

- bipotent undifferentiated progenitor cells
- \rightarrow Differentiation to hepatocytes

- expression of most of the liver specific genes:

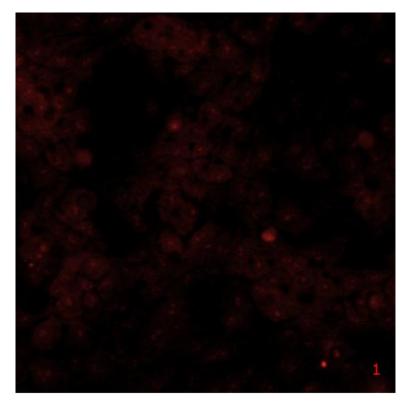
- phase I and II enzymes
- nuclear receptors
- liver specific proteins

→ Closely resemble human primary hepatocytes

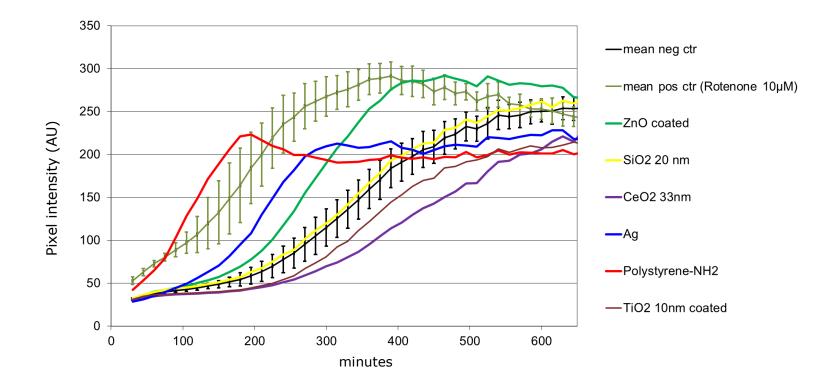
Determining the best assay conditions

Suitable cell model → More complex if 3D cell models shall be used

Time lapse to find the best experimental time point


Assay needs to be suitable for automation \rightarrow Fixation of cells

Formation of ROS (reactive oxygen species) using DHE stain


positive control (cells treated with Rotenone)

negative control (untreated cells)

Formation of ROS in HepaRG cells

Determining the best assay conditions

Suitable cell model \rightarrow More complex if 3D cell models shall be used

Time lapse to find the best experimental time point

Assay needs to be suitable for automation → Fixation of cells to account for time delays that occur during image acquisition

Overview

- Motivation
- > HTS/HCA facility at EURL-ECVAM
- > Translating data into a regulatory context
- HTS in nanotoxicology
- Summary

To integrate and make use of HTS data:

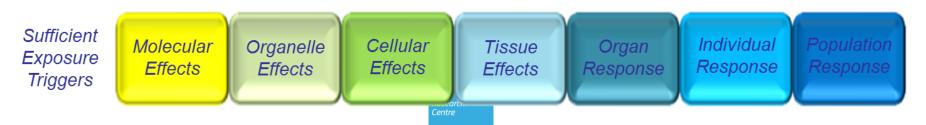
Adverse Outcome Pathways (AOPs)

- \rightarrow Framework to allow usage of data
 - "a **conceptual framework** that portrays existing knowledge on the links
 - between a Molecular Initiating Event (MIE) and an Adverse Outcome (AO)"
 - \rightarrow adverse health or ecotoxicological effect of regulatory concern

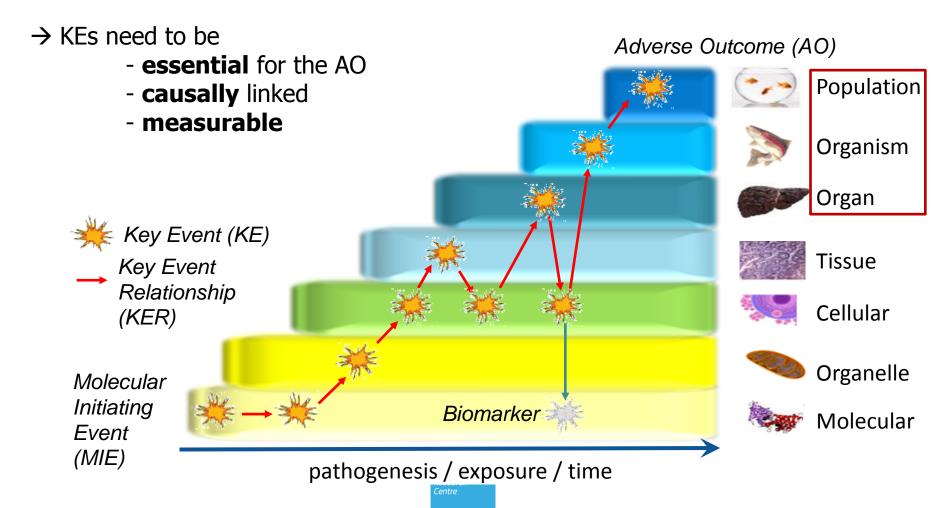
Launched by OECD in 2012: Guidance document available on OECD webpage
→ http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
> http://ihcp.jrc.ec.europa.eu/our_activities/alt-animal-testing-safety-assessment-chemicals/improved_safety_assessment_chemicals/adverse-outcome-pathways-aop

Adverse Outcome Pathway (AOP)

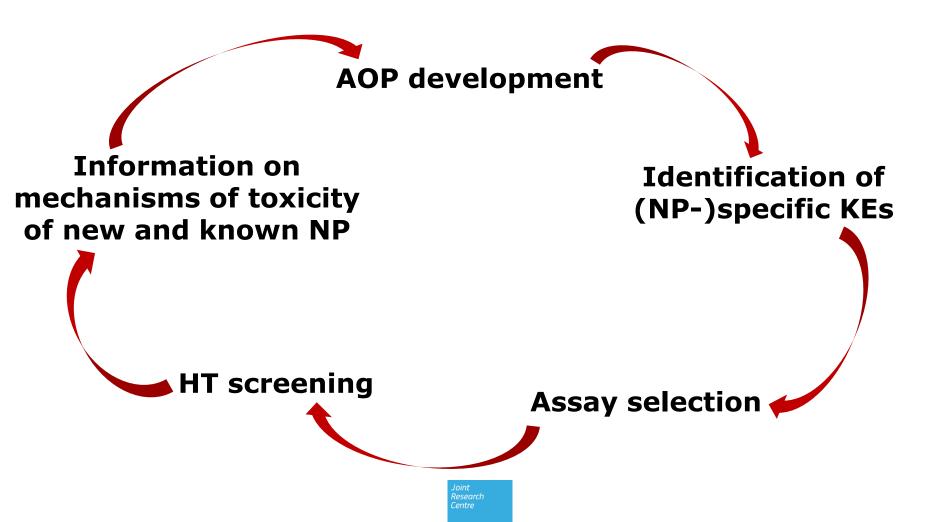
Simplification of a toxic process


Systematic AOP development in the "AOP-wiki" \rightarrow formation of an AOP network

https://aopkb.org/

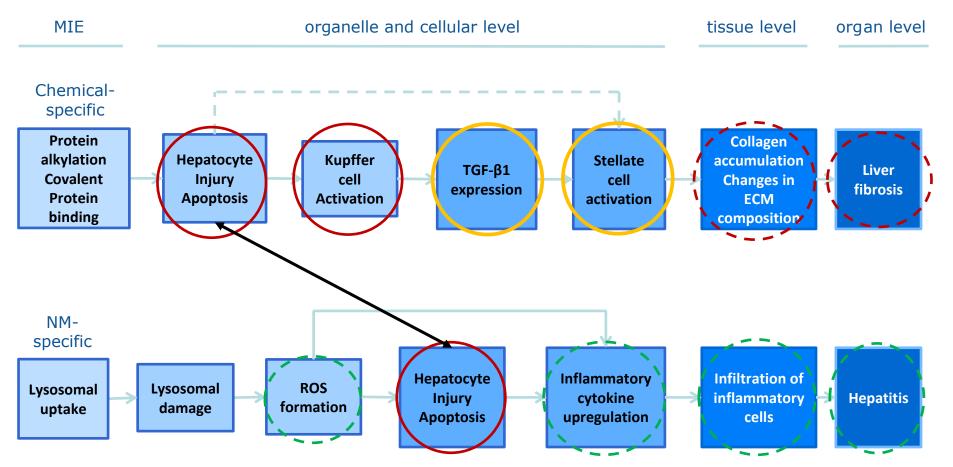

Integration of data from many different sources

HTS-assay selection based on key events relevant for regulatory endpoints

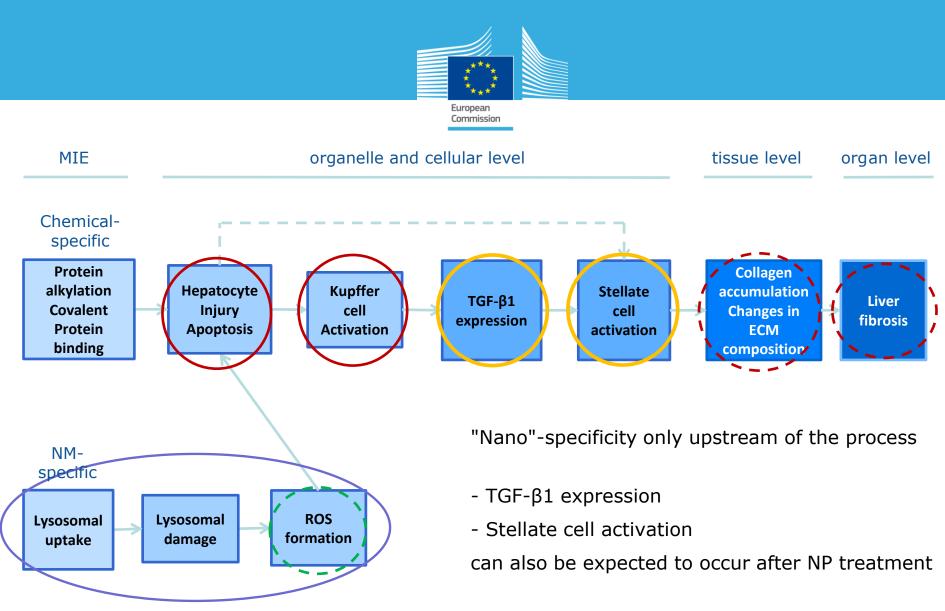


Background – Adverse Outcome Pathway (AOP)

Practical implementations into HTS strategy



Opportunities in nano-AOP development


- Available AOPs based on chemical-induced AOs can inform nano-AOPs
- \rightarrow Fill in knowledge gaps
- \rightarrow Allows to focus research needs

Choice of assays in HTS based on KEs

Landesmann, aop-wiki Gerloff et al., The AOP approach in nanotoxicology, in preparation

Overview

- Motivation
- > HTS/HCA facility at EURL-ECVAM
- > Translating data into a regulatory context
- HTS in nanotoxicology
- Summary

HTS workpackages/theme contents in FP7 project clusters

- -NanoMILE
- -NanoTest
- -NanoSolutions
- -NanoReg
- -Marina
- -Sun
- UC-CEIN (USA, under A. Nel)

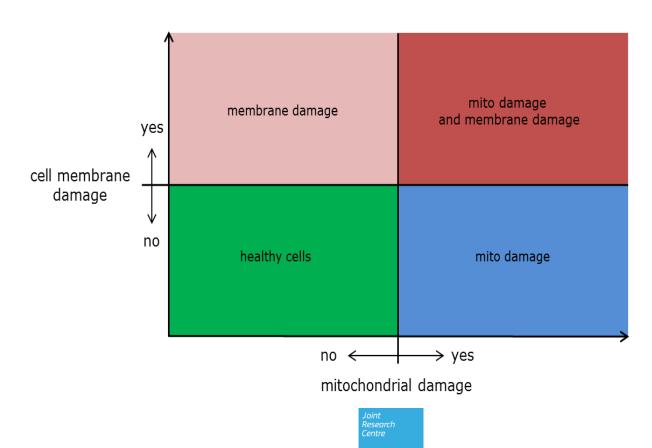
		JRC	partner 1		partner 2	partner 3			
			<u> </u>		2			effect	
		HepaRG liver cells	HepG2 liver cells	RAW264.7 macrophages	A549 lung cells	A549 lung cells	zebrafish embryos		
	incubation time	24 h	24h	24h	24h	24h	120 h		
			n.d.	n.d.		n.d.		membrane damage/cell count	
		n.d.	n.d.	n.d.				mitochondrial health	
TiO2 10nm, uncoated						n.d.		apoptosis	
				n.d.				lysosomal acidification	
		n.d.						steatosis	
							n.d.	mortality	
							n.d.	hatching	
							n.d.	morphology	
			n.d.	n.d.		n.d.		membrane damage/cell count	
		n.d.	n.d.	n.d.				mitochondrial health	
Tion	10					n.d.		apoptosis	
TiO2 10nm,				n.d.				lysosomal acidification	
0.02	ting 1	n.d.						steatosis	
coating 1							n.d.	mortality	
							n.d.	hatching	
							n.d.	morphology	
			n.d.	n.d.		n.d.		membrane damage/cell count	
			n.d.	n.d.				mitochondrial health	
-						n.d.		apoptosis	
1102	2 10nm,			n.d.				lysosomal acidification	
000	ting 2	n.d.						steatosis	
LO4	iting z						n.d.	mortality	
							n.d.	hatching	
							n.d.	morphology	
			n.d.	n.d.		n.d.		membrane damage/cell count	
		n.d.	n.d.	n.d.				mitochondrial health	
						n.d.		apoptosis	
1102	2 10nm,			n.d.				lysosomal acidification	
	+ing 2	n.d.						steatosis	
COa	nting 3						n.d.	mortality	
							n.d.	hatching	
							n.d.	morphology	
		n.d.				n.d.		membrane damage/cell count	
	[n.d.						mitochondrial health	
						n.d.		apoptosis	
1102	20nm,							lysosomal acidification	
byde	onhohio	n.d.						steatosis	
Inyuro	ophobic						n.d.	mortality	
							n.d.	hatching	
							n.d.	morphology	
		n.d.				n.d.		membrane damage/cell count	
		n.d.						mitochondrial health	
						n.d.		apoptosis	
TIO2	20nm,							lysosomal acidification	
	-	n.d.						steatosis	
Invdr	rophilic						n.d.	mortality	
							n.d.	hatching	
							n.d.	morphology	

NanoMILE WP4 HTS data gathering

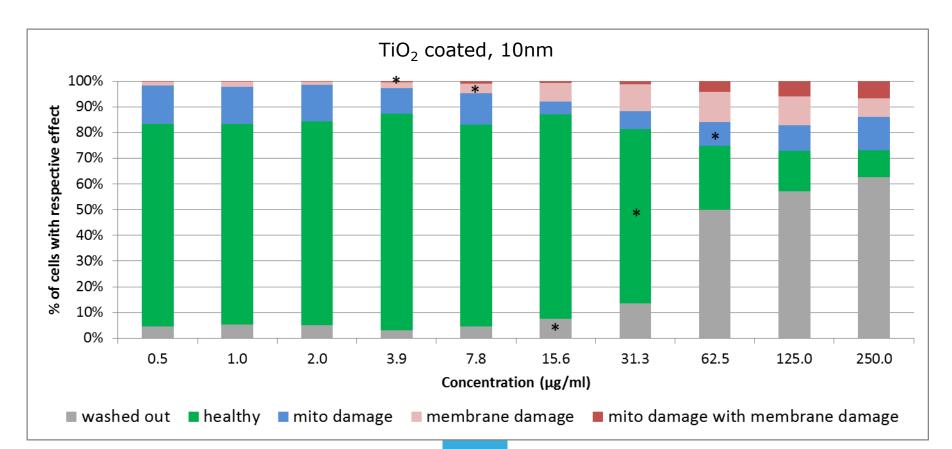
Snapshot of preliminary results

Adverse Effect (AE) intensity

Not analysed AE not detectable AE at high concentrations AE at intermediate concentrations AE at low concentrations


		European Commission				Later time point?		24 h treatment of HepaRG cells	
particle	↓ mitochondrial membrane potential	cytoplasmic caspase3	nuclear caspase3	nuclear size	nuclear intensity	lipid droplet size	cell membrane damage	cell count	
CeO2 20 nm	31.3	15.6	62.5	125	31.3	>250	31.3	>250	Size
CeO2 33 nm	>250	>250	>250	>250	125	>250	>250	>250	effect?
Ag	15.6	>250	3.9	1.95	7.8	3.9	1.95	1.95	
TiO2 10nm, uncoated	31.3	7.81	62.5	7.81	7.81	>250	7.8	31.3	
TiO2 10nm, coating 1	31.3	7.81	15.625	7.81	7.81	>250	31.3	31.3	
TiO2 10nm, coating 2	31.3	7.81	7.8125	7.81	7.81	>250	7.8	15.6	
TiO2 10nm, coating 3	31.3	7.81	31.25	7.81	7.81	>250	15.6	31.3	
TiO2 20nm, hydrophobio	>250	15.63	125	>250	>250	>250	125	125	
TiO2 20nm, hydrophilic	>250	7.81	62.5	>250	>250	>250	62.5	>250	
ZnO 150nm, uncoated	62.5	125	15.6	125	31.3	31.3	15.6	62.5	
ZnO 140nm, coated	31.3	31.3	15.6	31.3	15.6	15.6	31.3	31.3	
SiO2 < 20 nm	>250	>250	>250	>250	>250	>250	>250	>250	
SiO2 25-30 nm	>250	>250	>250	>250	>250	>250	>250	>250	
SiO2 50-60 nm	>250	>250	>250	>250	>250	>250	>250	>250	
SiO2 100 nm	>250	>250	62.5	>250	>250	>250	>250	>250	
SiO2-NH2 < 20 nm	31.3	31.25	62.5	>250	31.3	15.6	2.0	>250	
SiO2-NH2 25-30 nm	62.5	31.3	62.5	>250	62.5	125	2.0	>250	
SiO2-NH2 50-60 nm	>250	125	62.5	1.95	31.3	125	3.9	>250	
SiO2-NH2 100 nm	>250	>250	125	>250	125	125	7.8	>250	
SiO2-COOH < 20 nm	>250	>250	62.5	125	125	125	62.5	125	
SiO2-COOH 25-30 nm	>250	>250	>250	>250	>250	>250	>250	>250	
SiO2-COOH 50-60 nm	>250	>250	>250	>250	>250	>250	125	>250	
SiO2-COOH 100 nm	>250	>250	>250	>250	>250	>250	>250	>250	

first concentration (in μ g/ml) at which a significant difference with respect to the negative ctr is found


Information from a single assay: "mitochondrial damage" assay provides multiple parameters

Information from a single assay: "mitochondrial damage" assay provides multiple parameters

Overview

- Motivation
- > HTS/HCA facility at EURL-ECVAM
- > Translating data into a regulatory context
- HTS in nanotoxicology
- Summary

Summary

- HTS of NMs is a useful tool for predictive nanotoxicology and safe NM design
- Shortcomings as for any *in vitro* assay
- opportunities: ultimate goal is the reduction of *in vivo* experiments and rapid acquisition of toxicity data
- Useful implementation of large amount of data by applying AOPs

Joint Research Centre (JRC)

The European Commission's in-house science service

Maurice Whelan Brigitte Landesmann Sharon Munn Andrew Worth

Taina Palosaari Elisabeth Joossens Peter Macko Jean-Michel Gineste

Douglas Gilliland Isaac Ojea Jimenez

תודה Dankie Gracias Спасибо Köszönjük **Ferima** Grazie Dziękujemy Dėkojame Dakujeme Vielen Dank Paldies Täname teid Teşekkür Ederiz Obrigado 感謝您 감사합니다 Σας ευχαριστούμε **υουρι** Bedankt Děkujeme vám ありがとうございます Tack

www.jrc.ec.europa.eu

WP4 led by Silvia Diabaté (KIT Germany)

DISCLAIMER: This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents.

Joint Research Centre This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 310451.